
Optimization Algorithms in Deep Learning
Stochastic Gradient Descent and ADAM

Xiaoxi Shen and Jialong Li

Texas State University

November 17, 2023

1 / 33



ERM Framework for Deep Learning

Under ERM, given the training data set {(X i ,Y i )}ni=1 and a loss
function L, training a deep neural network can be formulated as

f̂ = argminf ∈F
1

n

n∑
i=1

L(f (X i ),Y i ), (1)

where

F =
{
f : Rd → R : f (x) = σL(W L · · ·σ2W 2(σ1(W 1x)))

}

Each member in F is parameterized by weight matrices
Θ = (W 1, . . . ,W L), so problem (1) is equivalent to

Θ̂ = argminΘ
1

n

n∑
i=1

L(fΘ(X i ),Y i ).

2 / 33



ERM Framework for Deep Learning

Under ERM, given the training data set {(X i ,Y i )}ni=1 and a loss
function L, training a deep neural network can be formulated as

f̂ = argminf ∈F
1

n

n∑
i=1

L(f (X i ),Y i ), (1)

where

F =
{
f : Rd → R : f (x) = σL(W L · · ·σ2W 2(σ1(W 1x)))

}
Each member in F is parameterized by weight matrices
Θ = (W 1, . . . ,W L), so problem (1) is equivalent to

Θ̂ = argminΘ
1

n

n∑
i=1

L(fΘ(X i ),Y i ).

2 / 33



Gradient Descent

Gradient Descent Updating Scheme:

Θ(k+1) = Θ(k) − η
1

n

n∑
i=1

∇Θ(k)L(fΘ(X i ),Y i ).

Two natural questions for GD are
1 When GD converges, does it converge to a local minimum or a saddle

point?
2 How long does it take to converge (i.e. convergence speed)?

3 / 33



Gradient Descent

Gradient Descent Updating Scheme:

Θ(k+1) = Θ(k) − η
1

n

n∑
i=1

∇Θ(k)L(fΘ(X i ),Y i ).

Two natural questions for GD are
1 When GD converges, does it converge to a local minimum or a saddle

point?
2 How long does it take to converge (i.e. convergence speed)?

3 / 33



A Recap from Calculus – Saddle Points

Let g : Rp → R and our goal is to minimize g(x) ∈ C 2.

(2nd Order Necessary Condition) If x∗ is a local minimizer, then

∇g(x∗) = 0. (1st Order Necessary Condition)
∇2g(x∗) is positive semi-definite, i.e. λmin(∇2g(x∗)) ≥ 0.

A critical point x∗ of g (∇g(x∗) = 0) can be categorized as follow:

λmin(∇2g(x∗))


> 0 local minimum
= 0 local minimum or non-strict saddle point
< 0 strict saddle point

Strict saddle points require that there is at least one direction along
which the curvature is strictly negative.

In general, distinguishing local minima and non-strict saddle points is
NP-hard.

4 / 33



A Recap from Calculus – Saddle Points

Let g : Rp → R and our goal is to minimize g(x) ∈ C 2.

(2nd Order Necessary Condition) If x∗ is a local minimizer, then

∇g(x∗) = 0. (1st Order Necessary Condition)
∇2g(x∗) is positive semi-definite, i.e. λmin(∇2g(x∗)) ≥ 0.

A critical point x∗ of g (∇g(x∗) = 0) can be categorized as follow:

λmin(∇2g(x∗))


> 0 local minimum
= 0 local minimum or non-strict saddle point
< 0 strict saddle point

Strict saddle points require that there is at least one direction along
which the curvature is strictly negative.

In general, distinguishing local minima and non-strict saddle points is
NP-hard.

4 / 33



A Recap from Calculus – Saddle Points

Let g : Rp → R and our goal is to minimize g(x) ∈ C 2.

(2nd Order Necessary Condition) If x∗ is a local minimizer, then

∇g(x∗) = 0. (1st Order Necessary Condition)
∇2g(x∗) is positive semi-definite, i.e. λmin(∇2g(x∗)) ≥ 0.

A critical point x∗ of g (∇g(x∗) = 0) can be categorized as follow:

λmin(∇2g(x∗))


> 0 local minimum
= 0 local minimum or non-strict saddle point
< 0 strict saddle point

Strict saddle points require that there is at least one direction along
which the curvature is strictly negative.

In general, distinguishing local minima and non-strict saddle points is
NP-hard.

4 / 33



A Recap from Calculus – Saddle Points

Let g : Rp → R and our goal is to minimize g(x) ∈ C 2.

(2nd Order Necessary Condition) If x∗ is a local minimizer, then

∇g(x∗) = 0. (1st Order Necessary Condition)
∇2g(x∗) is positive semi-definite, i.e. λmin(∇2g(x∗)) ≥ 0.

A critical point x∗ of g (∇g(x∗) = 0) can be categorized as follow:

λmin(∇2g(x∗))


> 0 local minimum
= 0 local minimum or non-strict saddle point
< 0 strict saddle point

Strict saddle points require that there is at least one direction along
which the curvature is strictly negative.

In general, distinguishing local minima and non-strict saddle points is
NP-hard.

4 / 33



A Recap from Calculus – Saddle Points

5 / 33



Theoretical Guarantee of Gradient Descent (Lee et al.
(2016)

Suppose we minimize a differential function g(x) via gradient descent:
x (k+1) = x (k) − η∇g(x (k))

(A1) ∥∇g(x)−∇g(y)∥ ≤ γ ∥x − y∥.
(A2) The initial point x0 is sampled from a distribution of a continuous

random variable.

With probability 1, gradient descent with a random initialization will
escape saddle points eventually.

It may take exponential time to escape (Du et al. 2017).

6 / 33



Theoretical Guarantee of Gradient Descent (Lee et al.
(2016)

Suppose we minimize a differential function g(x) via gradient descent:
x (k+1) = x (k) − η∇g(x (k))

(A1) ∥∇g(x)−∇g(y)∥ ≤ γ ∥x − y∥.

(A2) The initial point x0 is sampled from a distribution of a continuous
random variable.

With probability 1, gradient descent with a random initialization will
escape saddle points eventually.

It may take exponential time to escape (Du et al. 2017).

6 / 33



Theoretical Guarantee of Gradient Descent (Lee et al.
(2016)

Suppose we minimize a differential function g(x) via gradient descent:
x (k+1) = x (k) − η∇g(x (k))

(A1) ∥∇g(x)−∇g(y)∥ ≤ γ ∥x − y∥.
(A2) The initial point x0 is sampled from a distribution of a continuous

random variable.

With probability 1, gradient descent with a random initialization will
escape saddle points eventually.

It may take exponential time to escape (Du et al. 2017).

6 / 33



Theoretical Guarantee of Gradient Descent (Lee et al.
(2016)

Suppose we minimize a differential function g(x) via gradient descent:
x (k+1) = x (k) − η∇g(x (k))

(A1) ∥∇g(x)−∇g(y)∥ ≤ γ ∥x − y∥.
(A2) The initial point x0 is sampled from a distribution of a continuous

random variable.

Theorem

If g ∈ C 2 and x∗ is a strit saddle point, then under (A1), (A2) and the
assumption that 0 < η < 1/γ,

P
(
lim
k

x (k) = x∗
)

= 0.

With probability 1, gradient descent with a random initialization will
escape saddle points eventually.

It may take exponential time to escape (Du et al. 2017).

6 / 33



Theoretical Guarantee of Gradient Descent (Lee et al.
(2016)

Suppose we minimize a differential function g(x) via gradient descent:
x (k+1) = x (k) − η∇g(x (k))

(A1) ∥∇g(x)−∇g(y)∥ ≤ γ ∥x − y∥.
(A2) The initial point x0 is sampled from a distribution of a continuous

random variable.

Theorem

If g ∈ C 2 and x∗ is a strit saddle point, then under (A1), (A2) and the
assumption that 0 < η < 1/γ,

P
(
lim
k

x (k) = x∗
)

= 0.

With probability 1, gradient descent with a random initialization will
escape saddle points eventually.

It may take exponential time to escape (Du et al. 2017).

6 / 33



Theoretical Guarantee of Gradient Descent (Lee et al.
(2016)

Suppose we minimize a differential function g(x) via gradient descent:
x (k+1) = x (k) − η∇g(x (k))

(A1) ∥∇g(x)−∇g(y)∥ ≤ γ ∥x − y∥.
(A2) The initial point x0 is sampled from a distribution of a continuous

random variable.

Theorem

If g ∈ C 2 and x∗ is a strit saddle point, then under (A1), (A2) and the
assumption that 0 < η < 1/γ,

P
(
lim
k

x (k) = x∗
)

= 0.

With probability 1, gradient descent with a random initialization will
escape saddle points eventually.

It may take exponential time to escape (Du et al. 2017).
6 / 33



Overview of Popular Gradient Based Methods

7 / 33



Stochastic Gradient Descent (SGD)

Θ(k+1) = Θ(k) − η 1
n

∑n
i=1∇Θ(k)L(fΘ(X i ),Y i ).

Observation

1

n

n∑
i=1

∇Θ(k)L(fΘ(X i ),Y i ) = EPn [∇Θ(k)L(fΘ(X ),Y )]

=

∫
∇Θ(k)L(fΘ(X ),Y )dPn.

The Idea of SGD is to replace EPn [∇Θ(k)L(fΘ(X ),Y )] by an unbiased
estimator and a typical choice is

1

B

∑
i∈Sj

∇Θ(k)L(fΘ(X i ),Y i ), j = 1, . . . , ⌈n/B⌉.

where Sj is chosen uniformly at random among the set of all subsets
of size B from {1, . . . , n}.
In deep learning, SGD refers to the case B = 1. For B > 1, this is
known as the mini-batch gradient descent.

8 / 33



Stochastic Gradient Descent (SGD)

Θ(k+1) = Θ(k) − η 1
n

∑n
i=1∇Θ(k)L(fΘ(X i ),Y i ).

Observation

1

n

n∑
i=1

∇Θ(k)L(fΘ(X i ),Y i ) = EPn [∇Θ(k)L(fΘ(X ),Y )]

=

∫
∇Θ(k)L(fΘ(X ),Y )dPn.

The Idea of SGD is to replace EPn [∇Θ(k)L(fΘ(X ),Y )] by an unbiased
estimator and a typical choice is

1

B

∑
i∈Sj

∇Θ(k)L(fΘ(X i ),Y i ), j = 1, . . . , ⌈n/B⌉.

where Sj is chosen uniformly at random among the set of all subsets
of size B from {1, . . . , n}.
In deep learning, SGD refers to the case B = 1. For B > 1, this is
known as the mini-batch gradient descent.

8 / 33



Stochastic Gradient Descent (SGD)

Θ(k+1) = Θ(k) − η 1
n

∑n
i=1∇Θ(k)L(fΘ(X i ),Y i ).

Observation

1

n

n∑
i=1

∇Θ(k)L(fΘ(X i ),Y i ) = EPn [∇Θ(k)L(fΘ(X ),Y )]

=

∫
∇Θ(k)L(fΘ(X ),Y )dPn.

The Idea of SGD is to replace EPn [∇Θ(k)L(fΘ(X ),Y )] by an unbiased
estimator and a typical choice is

1

B

∑
i∈Sj

∇Θ(k)L(fΘ(X i ),Y i ), j = 1, . . . , ⌈n/B⌉.

where Sj is chosen uniformly at random among the set of all subsets
of size B from {1, . . . , n}.

In deep learning, SGD refers to the case B = 1. For B > 1, this is
known as the mini-batch gradient descent.

8 / 33



Stochastic Gradient Descent (SGD)

Θ(k+1) = Θ(k) − η 1
n

∑n
i=1∇Θ(k)L(fΘ(X i ),Y i ).

Observation

1

n

n∑
i=1

∇Θ(k)L(fΘ(X i ),Y i ) = EPn [∇Θ(k)L(fΘ(X ),Y )]

=

∫
∇Θ(k)L(fΘ(X ),Y )dPn.

The Idea of SGD is to replace EPn [∇Θ(k)L(fΘ(X ),Y )] by an unbiased
estimator and a typical choice is

1

B

∑
i∈Sj

∇Θ(k)L(fΘ(X i ),Y i ), j = 1, . . . , ⌈n/B⌉.

where Sj is chosen uniformly at random among the set of all subsets
of size B from {1, . . . , n}.
In deep learning, SGD refers to the case B = 1. For B > 1, this is
known as the mini-batch gradient descent.

8 / 33



Stochastic Gradient Descent (SGD)

9 / 33



Stochastic Gradient Descent (SGD)

Reasons for SGD: memory constraint and faster convergence.
A GPU with memory size 11Gb can only process 512 samples at one
time when using AlexNet for ImageNet.
SGD is not necessarily faster than GD if all samples can be processed
in a single machine in a parallel way, but in the memory-constraint
system SGD is often much faster than GD.

Convergence of SGD:

Under some general assumptions, convergence of SGD is guaranteed
for SGD if ηk = 1/kα for α ∈ (1/2, 1].
For constant step size, the gradient does not converge to zero.
However, nowadays, SGD with a constant learning rate works quite well
in many cases. So there is a gap between theory and applications.

10 / 33



Stochastic Gradient Descent (SGD)

Reasons for SGD: memory constraint and faster convergence.
A GPU with memory size 11Gb can only process 512 samples at one
time when using AlexNet for ImageNet.
SGD is not necessarily faster than GD if all samples can be processed
in a single machine in a parallel way, but in the memory-constraint
system SGD is often much faster than GD.

Convergence of SGD:

Under some general assumptions, convergence of SGD is guaranteed
for SGD if ηk = 1/kα for α ∈ (1/2, 1].
For constant step size, the gradient does not converge to zero.
However, nowadays, SGD with a constant learning rate works quite well
in many cases. So there is a gap between theory and applications.

10 / 33



GD with Momentum

p = mv . Momentum is a measure of the amount of motion that an
object has. An object with a high momentum will be harder to stop
or change direction than an object with a low momentum.

11 / 33



GD with Momentum

GD update: Θ(k+1) = Θ(k) − η 1
n

∑n
i=1∇Θ(k)L(fΘ(X i ),Y i ).

GD with momentum update:

Momentum: m(k+1) = βm(k) + (1− β) 1n
∑n

i=1 ∇Θ(k)L(fΘ(X i ),Y i )

Update: Θ(k+1) = Θ(k) − ηkm
(k).

m(0) = 0 and
m(k+1) = (1− β)

∑k
t=0 β

t 1
n

∑n
i=1∇Θ(k−t+1)L(fΘ(X i ),Y i ).

A common choice for β in practice is 0.9.

GD with momentum almost always works faster than GD. However,
this is not true for the naive stochastic version.

12 / 33



GD with Momentum

GD update: Θ(k+1) = Θ(k) − η 1
n

∑n
i=1∇Θ(k)L(fΘ(X i ),Y i ).

GD with momentum update:

Momentum: m(k+1) = βm(k) + (1− β) 1n
∑n

i=1 ∇Θ(k)L(fΘ(X i ),Y i )

Update: Θ(k+1) = Θ(k) − ηkm
(k).

m(0) = 0 and
m(k+1) = (1− β)

∑k
t=0 β

t 1
n

∑n
i=1∇Θ(k−t+1)L(fΘ(X i ),Y i ).

A common choice for β in practice is 0.9.

GD with momentum almost always works faster than GD. However,
this is not true for the naive stochastic version.

12 / 33



GD with Momentum

GD update: Θ(k+1) = Θ(k) − η 1
n

∑n
i=1∇Θ(k)L(fΘ(X i ),Y i ).

GD with momentum update:

Momentum: m(k+1) = βm(k) + (1− β) 1n
∑n

i=1 ∇Θ(k)L(fΘ(X i ),Y i )

Update: Θ(k+1) = Θ(k) − ηkm
(k).

m(0) = 0 and
m(k+1) = (1− β)

∑k
t=0 β

t 1
n

∑n
i=1∇Θ(k−t+1)L(fΘ(X i ),Y i ).

A common choice for β in practice is 0.9.

GD with momentum almost always works faster than GD. However,
this is not true for the naive stochastic version.

12 / 33



GD with Momentum

GD update: Θ(k+1) = Θ(k) − η 1
n

∑n
i=1∇Θ(k)L(fΘ(X i ),Y i ).

GD with momentum update:

Momentum: m(k+1) = βm(k) + (1− β) 1n
∑n

i=1 ∇Θ(k)L(fΘ(X i ),Y i )

Update: Θ(k+1) = Θ(k) − ηkm
(k).

m(0) = 0 and
m(k+1) = (1− β)

∑k
t=0 β

t 1
n

∑n
i=1∇Θ(k−t+1)L(fΘ(X i ),Y i ).

A common choice for β in practice is 0.9.

GD with momentum almost always works faster than GD. However,
this is not true for the naive stochastic version.

12 / 33



GD with Momentum

GD update: Θ(k+1) = Θ(k) − η 1
n

∑n
i=1∇Θ(k)L(fΘ(X i ),Y i ).

GD with momentum update:

Momentum: m(k+1) = βm(k) + (1− β) 1n
∑n

i=1 ∇Θ(k)L(fΘ(X i ),Y i )

Update: Θ(k+1) = Θ(k) − ηkm
(k).

m(0) = 0 and
m(k+1) = (1− β)

∑k
t=0 β

t 1
n

∑n
i=1∇Θ(k−t+1)L(fΘ(X i ),Y i ).

A common choice for β in practice is 0.9.

GD with momentum almost always works faster than GD. However,
this is not true for the naive stochastic version.

12 / 33



Adaptive Gradient Method (AdaGrad), Duchi et al, 2011

At the k-the iteration, update the parameter as

Θ(k+1) = Θ(k) − ηkG (k)−1/2
g (k), k = 0, 1, 2, ...,

where

g (k) =
1

n

n∑
i=1

∇Θ(k)L(fΘ(X i ),Y i )

G (k) =
k∑

j=1

g (j)g (j)T .

Caculating G (k)−1/2
may be hard. In practice, using diag(G (k))−1/2

works well enough.

AdaGrad is shown to exhibit a convergence rate similar to SGD for
convex problems and non-convex problems. After T iterations, the
error is of the order 1/

√
T .

13 / 33



Adaptive Gradient Method (AdaGrad), Duchi et al, 2011

At the k-the iteration, update the parameter as

Θ(k+1) = Θ(k) − ηkG (k)−1/2
g (k), k = 0, 1, 2, ...,

where

g (k) =
1

n

n∑
i=1

∇Θ(k)L(fΘ(X i ),Y i )

G (k) =
k∑

j=1

g (j)g (j)T .

Caculating G (k)−1/2
may be hard. In practice, using diag(G (k))−1/2

works well enough.

AdaGrad is shown to exhibit a convergence rate similar to SGD for
convex problems and non-convex problems. After T iterations, the
error is of the order 1/

√
T .

13 / 33



Adaptive Gradient Method (AdaGrad), Duchi et al, 2011

At the k-the iteration, update the parameter as

Θ(k+1) = Θ(k) − ηkG (k)−1/2
g (k), k = 0, 1, 2, ...,

where

g (k) =
1

n

n∑
i=1

∇Θ(k)L(fΘ(X i ),Y i )

G (k) =
k∑

j=1

g (j)g (j)T .

Caculating G (k)−1/2
may be hard. In practice, using diag(G (k))−1/2

works well enough.

AdaGrad is shown to exhibit a convergence rate similar to SGD for
convex problems and non-convex problems. After T iterations, the
error is of the order 1/

√
T .

13 / 33



Root Mean Squre Propagation (RMSProp), Tieleman &
Hinton, 2012

One drawback of AdaGrad is that it treats all past gradients equally,
and it is natural to use exponentially decaying weights for the bast
gradients.

RMSProp update:

G (k) = βG (k−1) + (1− β)g (k)g (k)T

Θ(k+1) = Θ(k) − ηkdiag(G (k))−1/2g (k).

In deep learning, a small number ϵ = 10−8 is often added to each
component in diag(G (k)) to reduce numerical instability.

14 / 33



Root Mean Squre Propagation (RMSProp), Tieleman &
Hinton, 2012

One drawback of AdaGrad is that it treats all past gradients equally,
and it is natural to use exponentially decaying weights for the bast
gradients.

RMSProp update:

G (k) = βG (k−1) + (1− β)g (k)g (k)T

Θ(k+1) = Θ(k) − ηkdiag(G (k))−1/2g (k).

In deep learning, a small number ϵ = 10−8 is often added to each
component in diag(G (k)) to reduce numerical instability.

14 / 33



Root Mean Squre Propagation (RMSProp), Tieleman &
Hinton, 2012

One drawback of AdaGrad is that it treats all past gradients equally,
and it is natural to use exponentially decaying weights for the bast
gradients.

RMSProp update:

G (k) = βG (k−1) + (1− β)g (k)g (k)T

Θ(k+1) = Θ(k) − ηkdiag(G (k))−1/2g (k).

In deep learning, a small number ϵ = 10−8 is often added to each
component in diag(G (k)) to reduce numerical instability.

14 / 33



Root Mean Squre Propagation (RMSProp), Tieleman &
Hinton, 2012

Theorem

Assume that the empirical risk function is gradient Lipshitz continuous and
lower bounded by R∗. Then RMSProp with diminishing step size
ηk = η1/

√
k and any β ∈ (0, 1),

min
k∈(1,T ]

∥∥∥g (k)
∥∥∥
1
≤ O

(
logT√

T

)
,

where T > 0 us the total iteration number.

15 / 33



Adaptive Moment Estimation (ADAM), Kingma & Ba,
2017

The paper “ADAM: A Method for Stochastic Optimization” has been
cited 160,205 times based on Google Scholar despite that there is an
error in the proof of the paper.

ADAM is the combination of RMSProp and the gradient descent with
momentum. Here is the ADAM update

(Momentum) : m(k) = β1m
(k−1) + (1− β1)g (k)

(RMSProp) : G (k) = β2G (k−1) + (1− β2)g (k)g (k)T

(Bias Correction) m̂(k) = m(k)/(1− βk
1 )

(Bias Correction) Ĝ
(k)

= G (k)/(1− βk
2 )

(Update) Θ(k+1) = Θ(k) − ηdiag(Ĝ
(k)

)−1/2m̂(k)

Common choices of β1 and β2 are 0.9 and 0.99 resp. in practice.

16 / 33



Adaptive Moment Estimation (ADAM), Kingma & Ba,
2017

The paper “ADAM: A Method for Stochastic Optimization” has been
cited 160,205 times based on Google Scholar despite that there is an
error in the proof of the paper.

ADAM is the combination of RMSProp and the gradient descent with
momentum. Here is the ADAM update

(Momentum) : m(k) = β1m
(k−1) + (1− β1)g (k)

(RMSProp) : G (k) = β2G (k−1) + (1− β2)g (k)g (k)T

(Bias Correction) m̂(k) = m(k)/(1− βk
1 )

(Bias Correction) Ĝ
(k)

= G (k)/(1− βk
2 )

(Update) Θ(k+1) = Θ(k) − ηdiag(Ĝ
(k)

)−1/2m̂(k)

Common choices of β1 and β2 are 0.9 and 0.99 resp. in practice.

16 / 33



Adaptive Moment Estimation (ADAM), Kingma & Ba,
2017

The paper “ADAM: A Method for Stochastic Optimization” has been
cited 160,205 times based on Google Scholar despite that there is an
error in the proof of the paper.

ADAM is the combination of RMSProp and the gradient descent with
momentum. Here is the ADAM update

(Momentum) : m(k) = β1m
(k−1) + (1− β1)g (k)

(RMSProp) : G (k) = β2G (k−1) + (1− β2)g (k)g (k)T

(Bias Correction) m̂(k) = m(k)/(1− βk
1 )

(Bias Correction) Ĝ
(k)

= G (k)/(1− βk
2 )

(Update) Θ(k+1) = Θ(k) − ηdiag(Ĝ
(k)

)−1/2m̂(k)

Common choices of β1 and β2 are 0.9 and 0.99 resp. in practice.

16 / 33



Adaptive Moment Estimation (ADAM), Kingma & Ba,
2017

Theorem

Assume that the empirical risk function is gradient Lipshitz continuous and
lower bounded by R∗. Then ADAM with diminishing step size
ηk = η1/

√
k and any β1 <

√
β2 < 1,

min
k∈(1,T ]

∥∥∥g (k)
∥∥∥
1
≤ O

(
logT√

T

)
,

where T > 0 us the total iteration number.

17 / 33



Numerical Experiment

Linear regression

Find local minimum

The experiments are conducted on Python 3.9.16, we developed our own
algorithms instead of using an existing library/Package.

18 / 33



Numerical Experiment : Linear Regression

Given

X ∼ N (0, 1) ε ∼ N (0, 1)

Y = β0 + β1x + ε

Loss =
1

n

n∑
i=1

(Yi − (β0 + β1xi ))
2

And the gradient of the loss function respect to β0 and β1 will be

∂

∂β0
Loss = −2

n

n∑
i=1

Yi − (β0 + β1xi )

∂

∂β1
Loss = −2

n

n∑
i=1

Yi − (β0 + β1xi )xi

We generate the (xi ,Yi ), for all i ∈ [n] with β0 = 2 and β1 = 3.

19 / 33



x β1 β0 + β1x Y

β0

Now we switch to PPT .

20 / 33



x β1 β0 + β1x Y

β0

Now we switch to PPT .

20 / 33



Numerical Experiment : local/global minimum

Use function

z = f (x , y) =
1

2
x2 +

1

4
y4 − 1

2
y2

By using “Second partial derivative test”, critical points are
(0, 0), (0, 1), (0,−1) and local minimum at (0, 1) and (0,−1), saddle point
at (0, 0). We will use the point nearby the saddle point as initial value
such as (0.1, 0.1), (−0.1,−0.1) and (10−7, 10−7), and

∇z =

[
x

y3 − y

]

21 / 33



Numerical Experiment : local/global minimum

Use function

z = f (x , y) =
1

2
x2 +

1

4
y4 − 1

2
y2

By using “Second partial derivative test”, critical points are
(0, 0), (0, 1), (0,−1) and local minimum at (0, 1) and (0,−1), saddle point
at (0, 0).

We will use the point nearby the saddle point as initial value
such as (0.1, 0.1), (−0.1,−0.1) and (10−7, 10−7), and

∇z =

[
x

y3 − y

]

21 / 33



Numerical Experiment : local/global minimum

Use function

z = f (x , y) =
1

2
x2 +

1

4
y4 − 1

2
y2

By using “Second partial derivative test”, critical points are
(0, 0), (0, 1), (0,−1) and local minimum at (0, 1) and (0,−1), saddle point
at (0, 0). We will use the point nearby the saddle point as initial value
such as (0.1, 0.1), (−0.1,−0.1) and (10−7, 10−7), and

∇z =

[
x

y3 − y

]

21 / 33



Function Overview

22 / 33



23 / 33



24 / 33



25 / 33



26 / 33



27 / 33



28 / 33



29 / 33



30 / 33



References

1 Lee, Jason D., et al. ”Gradient descent only converges to
minimizers.” Conference on learning theory. PMLR, 2016.

2 Du, Simon S., et al. ”Gradient descent can take exponential time to
escape saddle points.” Advances in neural information processing
systems 30 (2017).

3 Duchi, John, Elad Hazan, and Yoram Singer. ”Adaptive subgradient
methods for online learning and stochastic optimization.” Journal of
machine learning research 12.7 (2011).

4 Tieleman, Tijmen and Hinton, Geoffrey. “Lecture 6.5-rmsprop:
Divede the gradient by a running average of its recent magnitude.”
COURSERA: Neural networks for machine learning, 4(2):26-31, 2012

5 Kingma, Diederik P., and Jimmy Ba. ”Adam: A method for
stochastic optimization.” arXiv preprint arXiv:1412.6980 (2014).

31 / 33



References

6 Sun, Ruoyu. ”Optimization for deep learning: theory and algorithms.”
arXiv preprint arXiv:1912.08957 (2019).

7 Shi, Naichen, et al. ”RMSprop converges with proper
hyper-parameter.” International Conference on Learning
Representations. 2020.

8 Staib, Matthew, et al. ”Escaping saddle points with adaptive gradient
methods.” International Conference on Machine Learning. PMLR,
2019.

32 / 33



Thank you!

33 / 33


